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SUMMARY

Studies of various arrangements of wings and bodies designed to
provide favorable wave interference at supersonic speeds lead to the
problem of determining the minimum possible value of the wave resist-
ance obtainable by any disposition of the elements of an aircraft within
a definitely prescribed region. Under the assumptions that the total
lift and the total volume of the aircraft are given, conditions that
must be satisfied if the drag is to be a minimum are found. For arbi-
trary regions the minimum value can be estimated by a simple formula
giving a lower bound. .

DISCUSSION

.,

In 1935 Busemaan (ref. 1) showed that the wave drag of two airfoils
could be canceled by reflection. hter Ferrari (ref. 2) showed that the
drag of a body of revolution could be canceled by the addition of a ring
airfoil to catch the wave from the nose and reflect it back to the tail.
Even if the investigation is limited to such completely self-contained
wave systems, these examples are only two of an infinite number of
possibilities.

The examples in which the wave cancellation is complete are, however,
limited to syW.ems in which the net lift and lateral.force are zero.
Nevertheless, examples cited by Ferri (ref. 3) and by Graham (ref. k) show
that the wave drag associated with the lift can be diminished by various
three-dimensionalarrangements of wings and bodies. These examples lead
to a search for some general statements or criteria regarding the wave
drag of such three-dimensional arrangements.

In order to put the question in a definite form it will be assumed
that the airfoils and bodies are contained in the interior of a definite
three-dimensional region R. The total lift L and the volume v are
assumed to be given. It is supposed that the wave drag D depends some-
how on the distribution of the lift and the volume throughout R and that
with distributions of a certain family (called “optimum” ones) the drag
will have a minimum value. It is desired to find the optimum distribu-
tions, or the conditions determining them, and the value of the minimum
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have been considered by E. W. Graham and
example, the optimum distribution of lift

R is restricted to the plan form S of a planar wing,
type previously discussed by the present writer are

obtafied (refs. 5 and-6). In connection with the latter problems it was
found that all distributions of lift or volume satisfying the given
requirements could be characterizedby relatively simple conditions. The
present paper describes briefly the extension of these conditions to three-
dimensional regions and the additional conditions required.

As 3s usual in linearized-flowproblems it will be assumed that the
disturbance field of the airfoils and bodies can be produced by the action
of a distribution of sources and ‘lifting elements” or horseshoe vortices.
One of the difficulties associated with these problems is the determina-
tion of the actual geometric shapes produced by the distribution of singu-
larities. In the present analysis the relation between the body shapes
and the singularities is not known nor determined in detail. For slender
bodies or thin airfoils closed within the region R it.can be assumed
that the total volume is proportional to the first moment of the source
distribution with respect to a plane perpendicular to the flight direc-
tion, whereas the total lift is proportional to the total strength of
the lifting elements.

Suppose a region R together with a distribution of singularities
such as source”sor lifting vortices is given. (See fig. 1.) Then by
Hayesl theorem (ref. 7), the drag will be unchanged by a reversal of the
whole system. (The geometry of the flow, including that of the airfoils
and bodies, till be changed by the reversal but the total lift and the
total volume till not.) Then the drag may be computed by means of a fic-
titious “combined disturbance field” obtained by superimposing the dis-
turbances in the forward and
ities in this combined field

An arrangement of sources or

the reversed motion. The perturbation veloc-
may be denoted’by

Z?ii=Uf+Ur

27 f+vr=V

Z?u=wf+wr

lifting elements or
yields the minimum drag is then characterizedby

their combination
the conditions

which
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throughout R.

If conditions (1) are
whole system will be given

ii = Constant

7.()

x = C!o.s&t
&

satisfied, then
simply by

%IN=L$+VPV

(1)

the integrated drag of the

The first term on the right-hand side of this expression will be recog-
nized as the d??agarising from a rearward inclination of the lift vector,
whereas the second term is simply the product of the volume and the con-
stant gadient of pressure in the combined flow field.

These conditions may be verified by making use of a “mutual drag
relation,” essentially similar to the well.-lmownUrsell-Ward reciprocal
relation, which connects the drag of any two interfering distributions
of stigularities in the conibinedflow field. According to this relation
the drag of distribution A caused by the interference of a second dis-
tribution B is eqyal to the drag added to B by the interference of A.
Now let A be a distribution within RA satis~ing conditions (l). For

B select a distribution having zero total lift and zero total volume. If
RB is contained within RA, then the addition of B will amount simply

to a redistributionjwithoutchanging the total lift L or the vohune v,
of A. The drag of A + B may then be written in shorthsnd notation

D(A + B) =DM+D~+~

Then, since by the mutual drag
equation may be written as

D(A+ B)

relation DD

=D~+~+

Here ~ is the drag of B in the combined

+ %B

is equal to ~, this

%B

disturbance field of A.

Since ; = Constant, T = O, and = = Constant in RA, this interfer-
&

ence drag may be written as

.—.—. .—— —————
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However, since ~ and v, are zero, ~ VSZliShOSsad the added drag

is that of distribution B alone or ~B. Now the drag of s,system alone,

that is, without interference, cannot be ne tive; hence, D(A + B) can.
Ynot be less than D(A) under conditions (1 .

On the other hand, suppose, for exsmple, that the sidewash VA were

not zero. A distribution of lateral forces couid then be found which “
would result in a negative titerference drag, dominating the quadratic
term ~, so that the total drag could be reduced. Hence, if the drag

of distribution A actually is a minimum value, conditions (1) must be
complied with.

Since w = 3!
az’ v

tions (1) do not agree

.-

.?fi,~d ?+
,?Y &ax

, it’ can be seen that condi-

with the linearized flow equation

(1- M2k= +tiwdzz=o

&i
in general, but only if — = O. Since ~ is proportional to the drag

ax ax
per unit volume, one concludes that the drag cannot be minimized in an
absolute sense unless the drag associated with the volume of the system
is zero (or unless the distribution of singularities is continuous
throughout R) . Examples such as the Busemam biplane satisfy the former

aucondition, namely, — = O.
ax ,

As Graham et al. have potited out, distributions of ,thesort being
considered here are not unique, since other solutions suclias those shown
in figure 2 may be added to them without changing the lift or the drag.

It is interest~ to note that conditions analogous to the condi-
tions i?= Constant and 7 = O were fetid by Munk in connection tith
the vortex drag of lifting systems at subsonic speeds. h that problem
the conditions apply to the two-&hnensional.motion associated with the
trace of the wing system h the Trefftz plane. If the idea of super-
imposed flow fields is utilized in the subsonic problem, one finds that
the cylhdrical flow associated with the Trefftz plane extends along the

— —
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whole flight path and hence ‘includesthe region -R.
apply at both subsonic and supersonic speeds,but are
restrictive at subsonic speeds.

llunk~sconditions of constant downwash and zero

5

Conditions (1) thus
unnecessarily

sidewash were used
by Hemke (ref. 8) to determine the effectiveness of end plates in reducing
the vortex drag of a wing at low speeds. It will be interesting to see
how the condition V = O might be used to determine an optimum setting
and camber for such a surface under more general conditions. This appli-
cation is illustrated in figure 3 for an end plate on the tip of a wing.

With the wing in forward motion, the lateral velocity vf at the
8urface of the end p~-te is simply the lateral slope of the fin surface
times the stream velocity. The condition F = O implies that Vr = -vf,

and this condition is obviously satisfied by keeping the geometry of the
fin fixed when the flow is rev-rsed. At the same time, however, recall
that the distribution of lift and lateral force must be kept the same in
forward and reversed flow. Hence, in order to achieve the minimum drag
one must find the particular camber and setting of the fin that will yield
the same distribution of lateral force for either direction of motion.
At first it seems impossible to satisfy such a requirement since, for
example, the direction of lift of an inclined surface is usually reversed
by reversing the direction of flow. However, the form of the adjacent
wing surface must, in general, change with reversal, since i7#0 and
since the lift distribution on the wing must remain unchanged. Then it
is evident that the conditions might be satisfied if the pressures on the
fin surface were dominated by the wing pressures through interference.

It must be admitted that the considerationshave thus’far been rather
abstract. A more concrete result would yield”the actual magnitudes of the
minimum drag associated with various regions. Such results for distribu-
tions of lift in spherical and ellipsoidal.regions have been given in
reference k. A somewhat more general result, applicable to arbitrary
regions R, can be obtained if merely a lower bound for the wave drag is
sought rather than the actual minimum.value. Since this lower bound coin-
cides with the minimum value in the examples found thus far, it may be
taken as an approximation to the actual drag in many cases.

To obtain such a lower bound, we may use Hayes’ formula (ref. 7) —
or the formula of Lomax (ref. 9), which expresses the drag more directly
in terms of areas and pressures intercepted by characteristicplanes.
By utilizing Hayes! method of equivalent positions (ref. 7) or the present
writer’s method of superimposing plane waves (ref. 6), one can construct,
at each angle 13,three equivalent linear distributions, namely, a volume
distribution, a lift distribution, and a side-force distribution. By a

_.— .—.
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hamnonic analysis (ref. 10) it is possible to show that the drag associated
with the leading term in the expansion of the lift distribution l(x), pro- ,
portional to the total 33ft L, cannot be diminished by interference. The
possibility, already known, that the drag associated with the volw can
be eliminated appears in this analysis. Hence, for the lower bound the
value given by the first term in the expansion of the lift distribution is
used. This step amounts to the assmption that each “lifting line” obtained
by integrating the spatial lift distribution over the intersecting Mach
planes is elliptically loaded. For a single elliptically loaded lifting
line psrallel to the flight direction, the wave drag is

(2)

where Z is the length of
lowing is obtained

where

the line. For the whole region R the fol-

>M2- 1 L*
%AvE.~~

l’cqz

1—. L r2fiSill% de
?* –’f Jo ~e 2[( JJ

(3)

(k),.,

and Z(.!3) is the projected length of R as defined in figure 4, with

B=m*

It will be evident from equation (3) that the wave drag depends
inversely on the square of an average projected length of the airfoil
system - just as the vortex drag depends inversely o the square of the

4span. However, because of the weighting factor sin the lateral
dimensions of R sre relatively unimportant compared to the dimension,
or length, along the flight direction. Figure 5 shows the magnitude
of the error made by using the actual length 1 and equation (2) for
the wave drag of several 13fting surfaces.

Generally speaking, the losses associated with the production of a
given force in a frictionless fluid are diminished by increasing the area
involved in the production of the force and diminishing the pressure.
Thus the wave drag is diminished by making the “area“ 12 as large as
possible. The vortex drag is diminished by inking the square of the span
as large as possible. On the other hand, to diminish the friction drag
the actual srea S of the wing system must be made as smalJ_as possible.

.

.—— .— ——..—
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At subsonic speeds the conditions are satisfied by making b2 large com-
pared with S or using a wing of high aspect ratio. It is a matter of
ordinary observation to see that this condition determines the rather
special form of subsonic aircraft. At supersonic speeds, a large value

22of the “longitudinalaspect ratio” ~ IS needed in addition.

At subsonic speeds, the elliptically loaded lifting line achieves
the minimum value of the pressure drag for the whole area covered by the
wake of the lifting line. At supersonic speeds such a lifting line
develops, according to linear theory, an infinite drag. However, if the
line is yawed behind the Mach angle the drag is finite and is actually .
the smsllest value obtainable by any distribution within the region of
the parallelogram ABC!D sham in figure 6. Such an oblique lifting line

b2 72
maximizes both — and — simultaneously. At moderate supersonic Mach

s s
numbers, the results obtained with a V-shaped lifting line - approximating
a swept wing - are nearly a8 good.

When a wing is made narrower so as to approach a “lifting line” while
maintaining a fixed total lift, the lifting pressure must increase. 13ven-
tually the.pressure, or the lift coefficient, will exceed the limitation
imposed by the small-disturbancetheory, or flow separation will occur.
Beyond this point increases of aspect ratio either laterally or longi-
tudinally will not necessarily increase the lift-drag ratio.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Field, Cal.if.,Nov. 1, 1955

.
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CONDITIONS FOR MINIMUM DRAG -
DISTRIBUTIONS OF LIFT AND VOLUME IN REGION R

z MACH ENVELOPE

—

+
LIFT

z

~ = CONST

~.o

~= CONST
.,

Figure 1

DISTRIBUTIONS OF LIFT AND VOLUME WITH
SELF-CONTAINED WAVE SYSTEMS

RING VORTEX
7’

/e,/‘\\‘\\ /

f

ELLIPSOID

UNIFORMLY LOADED .
DISK +

)

1ELLIPTICALLY LOADED
LIFTING LINE –L

Figure 2
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USE OF CONDITION T= O TO DETERMINE OPTIMUM SETTING
OF VERTICAL FIN ON WING TIP

VERilCAL FIN

&-WING

Y LATERAL FORCE DISTRIBUTION
ON FIN, Aj)

x

\ \.

Apf=@r; LATERAL FORCE DISTRIBUTION UNCHANGED

Vf = -vr ; FIN GEOMETRYUNCHANGED

Figure 3

.

LOWER BOUND FOR WAVE DRAG ASSOCIATED
WITH THE REGION R AND THE LIFT L

MACH PLANE

x’” ;/X-/3yCOSi3-& SIN8= CONST

,~ I(8-

‘-a. ‘

.

Figure 4
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APPROXIMATE EXPRESSION FOR WAVE DRAG OF
LIFTING SURFACE

1.5 03:1
/’A’.

-.—

.5 a:’ -

1

0 .2 , .4 .6 .8 LO
m

Figure 5

IDEAL DISTRIBUTION OF LIFT
FOR PARALLELOGRAM ABCD

!v

/
/

/
/

/
B(

1
:1 LIFTING LINE WITH
;1 ELLIPTIC LOADING

——— MACH LINES

Figure 6

NACA - Langley Field, Va.
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